

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

1 of 6

Hidden Hills 2g Dispo BFF - Lato Pop

Batch: 080124-HHC-SB ype: Finished Product Aatrix: Other - Other Jnit Mass (g):		Received: 08/28 Completed: 09/1		Client WherezHemp 1123 S Federal Highway #704 Fort Lauderdale, FL 33316 USA		
	Ĭ					
	the state		Summary			
			Test	Date Tested	Status	
	-fills		Cannabinoids	09/03/2024	Tested	
			Heavy Metals	09/06/2024	Tested	
			Microbials	09/10/2024	Tested	
			Mycotoxins	09/09/2024	Tested	
			Pesticides	09/09/2024	Tested	
			Residual Solvents	09/06/2024	Tested	
ND	47.1 %	89.2 %	Not Tested	Not Tested	Yes	
Δ9-ТНС	∆8-ТНС	Total Cannabinoids	Moisture Content	Foreign Matter	Internal Standard Normalization	
	LC			Result	Result	
nalyte	-	6)	LOQ (%) 0.0284	Result (%) ND	Result (mg/g) ND	
nalyte BC BCA	LC (% 0.00 0.00	6) 095 00 1181 0	(%) 0.0284 0.0543	(%) ND ND	(mg/g) ND ND	
BC BCA BCV	LC (% 0.00 0.0 0.0 0.0	6) 095 00 1181 00 106	(%) 0.0284 0.0543 0.018	(%) ND ND ND	(mg/g) ND ND ND	
nalyte BC BCA BCV BD	LC (% 0.00 0.0 0.0 0.0 0.0	6) 095 00 1181 00 106 081 00	(%) 0.0284 0.0543 0.018 0.0242	(%) ND ND ND 5.38	(mg/g) ND ND ND 53.8	
nalyte BC BCA BCV BD BDA	LC (9 0.00 0.0 0.0 0.0 0.0 0.00 0.00	6) 095 00 1181 00 006 081 00 043	(%) 0.0284 0.0543 0.018 0.0242 0.013	(%) ND ND 5.38 ND	(mg/g) ND ND ND 53.8 ND	
nalyte BC BCA BCV BD BDA BDA BDP	LC (9 0.00 0.00 0.00 0.00 0.00 0.00 0.00	6) 095 00 1181 00 006 081 00 043 0067	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.02	(%) ND ND 5.38 ND 0.0296	(mg/g) ND ND ND 53.8 ND 0.296	
nalyte BC BCA BCV BD BDA BDA BDP BDV	LC (9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	6) 095 00 1181 00 006 081 00 043 00 067 00 061 00	(%) 0.0284 0.0543 0.018 0.0242 0.013	(%) ND ND 5.38 ND	(mg/g) ND ND ND 53.8 ND	
nalyte BC BCA BCV BD BDA BDA BDP BDV BDVA	LC (9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	6) 095 C 1181 C 106 081 C 043 067 061 C 021 C	(%) 0.0284 0.0543 0.0543 0.018 0.0242 0.013 0.02 0.0182	(%) ND ND 5.38 ND 0.0296 ND	(mg/g) ND ND ND 53.8 ND 0.296 ND	
nalyte BC BCA BCV BD BDA BDA BDP BDV BDV BDVA BG BGA	LC (9 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	6) 095 CC 1181 CC 006 CC 081 CC 043 CC 067 CC 061 CC 021 CC 057 CC 049 CC	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.02 0.0182 0.0063 0.0172 0.0147 0.0147	(%) ND ND 5.38 ND 0.0296 ND ND ND	(mg/g) ND ND S3.8 ND 0.296 ND ND ND	
nalyte BC BCA BCV BD BDA BDA BDP BDV BDVA BG BGA BL		6) 095 006 081 00 043 067 061 00 021 00 057 00 049 00	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.02 0.0182 0.0063 0.0172 0.0147 0.0335	(%) ND ND 5.38 ND 0.0296 ND ND ND ND ND ND ND ND	(mg/g) ND ND S3.8 ND 0.296 ND ND ND ND ND ND ND ND ND ND	
nalyte BC BCA BCV BD BDA BDA BDP BDV BDVA BG BGA BL BLA	LC (9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	6) 095 006 081 006 043 067 061 00 057 00 049 00 0112 00 112 00	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.02 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371	(%) ND ND 5.38 ND 0.0296 ND ND ND ND ND ND ND ND ND ND	(mg/g) ND ND S3.8 ND 0.296 ND ND ND ND ND ND ND ND ND ND ND	
malyte BC BCA BCV BD BDA BDA BDP BDV BDVA BG BGA BL BLA BN	LC (9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	6) 095 0181 006 081 043 067 061 021 057 049 0112 124 056	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.02 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169	(%) ND ND ND 5.38 ND 0.0296 ND ND ND ND ND ND ND ND ND ND 1.16	(mg/g) ND ND ND S3.8 ND 0.296 ND ND ND ND ND ND ND ND ND ND ND ND ND	
malyte BC BCA BCV BD BDA BDP BDV BDVA BG BGA BL BLA BN BNA	LC (9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	6) 095 0181 1006 081 043 067 061 021 057 049 0112 124 056 006	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.02 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181	(%) ND ND S38 ND 0.0296 ND ND ND ND ND ND ND ND ND ND	(mg/g) ND ND ND S3.8 ND 0.296 ND ND ND ND ND ND ND ND ND ND ND ND ND	
nalyte BC BCA BCV BD BDA BDA BDP BDV BDVA BG BGA BL BLA BLA BN BNA BT		6) 095 0181 006 081 043 067 061 021 057 049 0112 124 006 006 018	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.02 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.054	(%) ND ND ND 5.38 ND 0.0296 ND ND ND ND ND ND ND ND ND ND	(mg/g) ND ND ND S3.8 ND 0.296 ND ND ND ND ND ND ND ND ND ND ND ND ND	
nalyte BC BCA BCV BD BDA BDP BDV BDVA BG BGA BL BLA BN BNA BT 4,8-iso-THC	LC (9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	6) 095 C 1181 C 106 C 081 C 043 C 067 C 061 C 021 C 057 C 049 C 0112 C 124 C 056 C 066 C 018 C 067 C 077	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.02 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.054 0.02	(%) ND ND ND 5.38 ND 0.0296 ND ND ND ND ND ND ND ND ND ND	(mg/g) ND ND ND S3.8 ND 0.296 ND ND ND ND ND ND ND ND ND ND ND ND ND	
nalyte BC BCA BCV BD BDA BDP BDV BDVA BG BCA BL BLA BLA BNA BT 4,8-iso-THC 8-iso-THC	LC (9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	6) 095 0181 006 081 043 057 061 021 057 049 0112 124 006 006 018 067 067 066 076 076 076 076 076 076 076 076 076 076	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.02 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.054 0.02 0.02	(%) ND ND ND 5.38 ND 0.0296 ND ND ND ND ND ND ND ND ND ND	(mg/g) ND ND ND S3.8 ND 0.296 ND ND ND ND ND ND ND ND ND ND	
nalyte BC BCA BCV BD BDA BDP BDV BDVA BG BGA BL BLA BN BNA BT 4,8-iso-THC 8-iso-THC 8-THC	LC (9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	6) 095 0181 006 081 043 067 061 021 057 049 0112 124 006 007 006 018 0067 007 007 007 006 018 0067 007 0067 007 008 009 009 009 009 009 009 009 009 009 009 009	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.02 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.054 0.02	(%) ND ND S38 ND 0.0296 ND ND ND ND ND ND ND ND ND ND	(mg/g) ND ND ND S3.8 ND 0.296 ND ND ND ND ND ND ND ND ND ND ND ND ND	
nalyte BC BCA BCV BD BDA BDP BDV BDVA BG BGA BLA BLA BLA BNA BT 4,8-iso-THC 8-iso-THC 8-THC 8-THCP	LC (9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	6) 095 0 095 0 <td>(%) 0.0284 0.0543 0.018 0.0242 0.013 0.02 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.054 0.02 0.0312</td> <td>(%) ND ND ND 5.38 ND 0.0296 ND ND ND ND ND ND ND ND ND ND</td> <td>(mg/g) ND ND ND S3.8 ND 0.296 ND ND ND ND ND ND ND ND ND ND</td>	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.02 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.054 0.02 0.0312	(%) ND ND ND 5.38 ND 0.0296 ND ND ND ND ND ND ND ND ND ND	(mg/g) ND ND ND S3.8 ND 0.296 ND ND ND ND ND ND ND ND ND ND	
nalyte BC BCA BCV BD BDA BDP BDV BDVA BG BCA BL BLA BLA BNA BT 4,8-iso-THC 8-iso-THC 8-THC 8-THCP 8-THCV	LC (9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	6) 095 0 095 0 0 181 0 0 006 0 0 043 0 0 043 0 0 043 0 0 057 0 0 057 0 0 057 0 0 057 0 0 057 0 0 057 0 0 057 0 0 057 0 0 056 0 0 056 0 0 056 0 0 056 0 0 057 0 0 056 0 0 057 0 0 056 0 0 057 0 0 057 0 0 057 0 0	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.02 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.054 0.02 0.0312 0.02 0.0312 0.02	(%) ND ND ND 5.38 ND 0.0296 ND ND ND ND ND ND ND ND ND ND	(mg/g) ND ND ND S3.8 ND 0.296 ND ND ND ND ND ND ND ND ND ND	
nalyte BC BCA BCV BD BDA BDP BDV BDVA BG BGA BL BLA BNA BT 4,8-iso-THC 8-iso-THC 8-iso-THC 8-THC 8-THCP 8-THCP 8-THCV 9-THC	LC (9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	6) 095 0181 006 081 043 043 067 061 021 057 049 0112 124 056 006 018 067 076 076	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.02 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.02 0.02 0.0312 0.0251	(%) ND ND ND 5.38 ND 0.0296 ND ND ND ND ND ND ND ND ND ND	(mg/g) ND ND ND S3.8 ND 0.296 ND ND ND ND ND ND ND ND ND ND	
nalyte BC BCA BCV BD BDA BDP BDV BDVA BG BGA BL BLA BNA BT 4,8-iso-THC 8-iso-THC 8-iso-THC 8-THCP 8-THCP 8-THCV 9-THC 9-THCA 9-THCP	LC (9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	6) 095 0181 006 081 043 043 067 061 021 057 049 0112 124 056 006 018 067 076 076	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.02 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.02 0.02 0.0312 0.0227	(%) ND ND ND 5.38 ND 0.0296 ND ND ND ND ND ND ND ND ND ND	(mg/g) ND ND ND S3.8 ND 0.296 ND ND ND ND ND ND ND ND ND ND	
Analyte BC BCA BCV BD BDA BDP BDV BDVA BG BGA BL BLA BN BNA BT 4,8-iso-THC 8-iso-THC 8-THCP 8-THCP 9-THCA 9-THCP 9-THCP 9-THCV		6) 095 0181 006 081 043 043 067 061 021 057 049 0112 124 056 006 018 067	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.02 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.02 0.02 0.0312 0.026	(%) ND ND ND 5.38 ND 0.0296 ND ND ND ND ND ND ND ND ND ND	(mg/g) ND ND ND S3.8 ND 0.296 ND ND ND ND ND ND ND ND 11.6 ND ND 11.6 ND ND 11.6 ND ND 11.6 ND ND 11.6 ND ND 11.6 ND ND 11.6 ND ND 11.6 ND ND 11.6 ND ND 11.6 ND ND 11.6 ND ND 11.6 ND ND ND 11.6 ND ND 11.6 ND ND 11.6 ND ND ND 11.6 ND ND ND ND ND ND ND ND ND ND	
Analyte BC BCA BCV BD BDA BDA BDP BDV BDVA BC BCA BCA BCA BL BLA BLA BN BT 4,8-iso-THC 8-iso-THC 8-THCP 8-THCP 9-THCA 9-THCP 9-THCV 9-THCV 9-THCV 9-THCVA		6) 095 0181 006 081 043 043 067 061 021 057 049 0112 124 056 006 018 067	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.02 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.02 0.02 0.0312 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	(%) ND ND ND 5.38 ND 0.0296 ND ND ND ND ND ND ND ND ND ND	(mg/g) ND ND ND S3.8 ND 0.296 ND ND ND ND ND ND ND ND 11.6 ND ND 11.6 ND ND 0.929 471 1.21 0.291 ND 237 116 ND 237 116 ND ND ND 237 116 ND ND ND ND 237 116 ND ND ND ND 237 116 ND ND ND ND 237 116 ND ND ND 237 116 ND ND ND 237 116 ND ND ND 237 116 ND ND ND 237 116 ND ND ND 237 116 ND ND 237 116 ND ND ND 237 116 ND ND ND 237 116 ND ND ND 237 116 ND ND ND 237 116 ND ND ND 237 116 ND ND 237 116 ND ND 237 116 ND 237 116 ND ND 237 116 ND ND 237 116 ND ND 237 116 ND ND 237 116 ND ND 237 116 ND ND 237 116 ND ND 237 116 ND ND 237 116 ND ND 237 116 ND ND 237 116 ND ND 237 116 ND ND 237 ND ND 237 ND ND 237 ND ND 237 ND ND 237 ND ND 237 ND ND 237 ND ND 237 ND ND 237 ND ND 237 ND ND 237 ND ND 237 ND ND 237 ND ND 237 ND	
Cannabinoids Analyte CBC CBCA CBCA CBCA CBCV CBD CBDA CBDA CBDP CBDV CBDVA CBDV CBDVA CBDV CBDVA CBCA CBC CBCA CBC CBCA CBCA CBCA CBCA		6) 095 0181 006 081 043 043 067 061 021 057 049 0112 124 056 006 018 067 067 067 067 066 076 067 076 067	(%) 0.0284 0.0543 0.018 0.0242 0.013 0.02 0.0182 0.0063 0.0172 0.0147 0.0335 0.0371 0.0169 0.0181 0.02 0.02 0.0312 0.026	(%) ND ND ND 5.38 ND 0.0296 ND ND ND ND ND ND ND ND ND ND	(mg/g) ND ND ND S3.8 ND 0.296 ND ND ND ND ND ND ND ND 11.6 ND ND 11.6 ND ND 11.6 ND ND 11.6 ND ND 11.6 ND ND 11.6 ND ND 11.6 ND ND 11.6 ND ND 11.6 ND ND 11.6 ND ND 11.6 ND ND 11.6 ND ND ND 11.6 ND ND 11.6 ND ND 11.6 ND ND ND 11.6 ND ND ND ND ND ND ND ND ND ND	

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; RL = Reporting Limit; Δ = Delta; Total Δ 9-THC = Δ 9-THCA * 0.877 + Δ 9-THC; Total CBD = CBDA * 0.877 + CBD;

1 Hac-MR/ PJLA Generated By: Ryan Bellone Tested By: Nicholas Howard nh Testin CCO Scientist ISO/IEC 17025:2017 Accredited Accreditation #108651 Date: 09/10/2024 Date: 09/03/2024

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories and provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

2 of 6

Hidden Hills 2g Dispo BFF - Lato Pop

Sample ID: SA-240828-4 Batch: 080124-HHC-SB4 Type: Finished Product - Matrix: Other - Other Jnit Mass (g):	A-D-2-OG-HAW	Received: 08/28/2024 Completed: 09/10/2024	Client WherezHemp 1123 S Federal Highway #704 Fort Lauderdale, FL 33316 USA		
Heavy Metals k _{Analyte}		LOQ (ppm)	Result (ppm)		
Heavy Metals k Analyte Arsenic	by ICP-MS LOD (ppm) 0.002	LOQ (ppm) 0.02	Result (ppm)		
Analyte Arsenic	LOD (ppm)				
Analyte	LOD (ppm) 0.002	0.02	ND		

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 09/10/2024

Tested By: Chris Farman

ested By: Chris Farmar Scientist Date: 09/06/2024

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

3 of 6

Hidden Hills 2g Dispo BFF - Lato Pop

Sample ID: SA-240828-47399 Batch: 080124-HHC-SBA-D-2-OG-HAW Type: Finished Product - Inhalable Matrix: Other - Other Unit Mass (g):

Received: 08/28/2024 Completed: 09/10/2024 Client

WherezHemp 1123 S Federal Highway #704 Fort Lauderdale, FL 33316 USA

Pesticides by LC-MS/MS

Analyte	LOD	LOQ	Result	Analyte	LOD	LOQ	Result
Abamectin	(ppb) 30	(ppb) 100	(ppb) ND	Hexythiazox	(ppb) 30	(ppb) 100	(ppb) ND
Acetamiprid	30	100	ND	Imazalil	30	100	ND
Azoxystrobin	30	100	ND	Imidacloprid	30	100	ND
Bifenazate	30	100	ND	Kresoxim methyl	30	100	ND
Bifenthrin	30	100	ND	Malathion	30	100	ND
Boscalid	30	100	ND	Metalaxyl	30	100	ND
Carbaryl	30	100	ND	Methiocarb	30	100	ND
Carbofuran	30	100	ND	Methomyl	30	100	
Chloranthraniliprole	30	100	ND	Mevinphos	30	100	ND
Chlorfenapyr	30	100	ND	Myclobutanil	30	100	ND
Chlorpyrifos	30	100	ND	Naled	30	100	ND
Clofentezine	30	100	ND	Oxamyl	30	100	ND
Coumaphos	30	100	ND	Paclobutrazol	30	100	ND
Cypermethrin	30	100	ND	Permethrin	30	100	ND
Diazinon	30	100	ND	Phosmet	30	100	ND
Dichlorvos	30	100	ND	Piperonyl Butoxide	30	100	ND
Dimethoate	30	100	ND	Prallethrin	30	100	ND
Dimethomorph	30	100	ND	Propiconazole	30	100	ND
Ethoprophos	30	100	ND	Propoxur	30	100	ND
Etofenprox	30	100	ND	Pyrethrins	30	100	ND
Etoxazole	30	100	ND	Pyridaben	30	100	ND
Fenhexamid	30	100	ND	Spinetoram	30	100	ND
Fenoxycarb	30 <	100	ND	Spinosad	30	100	ND
Fenpyroximate	30	100	ND	Spirotetramat	30	100	ND
Fipronil	30 🧹	100	ND	Spiroxamine	30	100	ND
Flonicamid	30	100	ND	Tebuconazole	30	100	ND
Fludioxonil	30	100	ND	Thiacloprid	30	100	ND
				Thiamethoxam	30	100	ND
				Trifloxystrobin	30	100	ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 09/10/2024

Tested By: Anthony Mattingly Scientist Date: 09/09/2024

This product or substance tasted by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

4 of 6

Hidden Hills 2g Dispo BFF - Lato Pop

Sample ID: SA-240828-47 Batch: 080124-HHC-SBA- Type: Finished Product - In Matrix: Other - Other Unit Mass (g):	D-2-OG-HAW	Received: 08/28/202 Completed: 09/10/20	
Mycotoxins by L Analyte	.C-MS/MS LOD (ppb)	LOQ (ppb)	Result (ppb)
B1	1	5	ND
B2	1	5	ND
G1	1	5	ND
G2	1	5	ND
Ochratoxin A	1	5	ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 09/10/2024

Tested By: Anthony Mattingly Scientist

Date: 09/10/2024 Date: 09/09/2024 Date: 09/09/2024 Date: 09/09/2024 Date: 09/09/2024 This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

5 of 6

Hidden Hills 2g Dispo BFF - Lato Pop

Sample ID: SA-240828-47399 Batch: 080124-HHC-SBA-D-2-OG-HAW Type: Finished Product - Inhalable Matrix: Other - Other Jnit Mass (g):		d: 08/28/2024 ted: 09/10/2024	Client WherezHemp 1123 S Federal Highway #704 Fort Lauderdale, FL 33316 USA		
Microbials by PCR and Pla		Result (CFU/a)	Result (Qualitative)		
Microbials by PCR and Pla Analyte Total aerobic count	LOD (CFU/g)	Result (CFU/g)	Result (Qualitative)		
Analyte			Result (Qualitative)		
Analyte Total aerobic count	LOD (CFU/g) 10	ND	Result (Qualitative)		
Analyte Total aerobic count Total coliforms	LOD (CFU/g) 10 10	ND ND	Result (Qualitative)		

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; CFU = Colony Forming Units; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Ryan Bellone CCO Date: 09/10/2024

Lade Rinuston

Tested By: Jade Pinkston Microbiology Technician Date: 09/10/2024

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

6 of 6

Hidden Hills 2g Dispo BFF - Lato Pop

Sample ID: SA-240828-47399 Batch: 080124-HHC-SBA-D-2-OG-HAW Type: Finished Product - Inhalable Matrix: Other - Other Unit Mass (g):

Received: 08/28/2024 Completed: 09/10/2024 Client

WherezHemp 1123 S Federal Highway #704 Fort Lauderdale, FL 33316 USA

Residual Solvents by HS-GC-MS

	5						
Analyte	LOD (ppm)	LOQ (ppm)	Result (ppm)	Analyte	LOD (ppm)	LOQ (ppm)	Result (ppm)
Acetone	167	500	ND	Ethylene Oxide	0.5	1	ND
Acetonitrile	14	41	ND	Heptane	167	500	ND
Benzene	0.5	1	ND	n-Hexane	10	29	ND
Butane	167	500	ND	Isobutane	167	500	ND
1-Butanol	167	500	ND	Isopropyl Acetate	167	500	ND
2-Butanol	167	500	ND	Isopropyl Alcohol	167	500	ND
2-Butanone	167	500	ND	Isopropylbenzene	167	500	ND
Chloroform	2	6	ND	Methanol	100	300	ND
Cyclohexane	129	388	ND	2-Methylbutane	10	29	ND
1,2-Dichloroethane	0.5	1	ND	Methylene Chloride	20	60	ND
1,2-Dimethoxyethane	4	10	ND	2-Methylpentane		29	ND
Dimethyl Sulfoxide	167	500	ND	3-Methylpentane	10	29	ND
N,N-Dimethylacetamide	37	109	ND	n-Pentane	167	500	ND
2,2-Dimethylbutane	10	29	ND	1-Pentanol	167	500	ND
2,3-Dimethylbutane	10	29	ND	n-Propane	167	500	ND
N,N-Dimethylformamide	30	88	ND	1-Propanol	167	500	ND
2,2-Dimethylpropane	167	500	ND	Pyridine	7	20	ND
1,4-Dioxane	13	38	ND	Tetrahydrofuran	24	72	ND
Ethanol	167	500	ND	Toluene	30	89	ND
2-Ethoxyethanol	6	16	ND	Trichloroethylene	3	8	ND
Ethyl Acetate	167	500	ND	Xylenes (o-, m-, and p-)	73	217	ND
Ethyl Ether	167	500	ND				
Ethylbenzene	3	7	ND				

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 09/10/2024

Tested By: Kelsey Rogers Scientist

Date: 09/10/2024 Date: 09/06/2024 Date: